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Predict Vehicle Collision by TTC From
Motion Using a Single Video Camera
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Abstract— The objective of this work is the instantaneous
computation of Time-to-Collision (TTC) for potential collision
only from the motion information captured with a vehicle borne
camera. The contribution is the detection of dangerous events
and degree directly from motion divergence in the driving video,
which is also a clue used by human drivers. Both horizontal
and vertical motion divergence are analyzed simultaneously in
several collision sensitive zones. The video data are condensed
to the motion profiles both horizontally and vertically in the
lower half of the video to show motion trajectories directly as
edge traces. Stable motion traces of linear feature components
are obtained through filtering in the motion profiles. As a result,
this avoids object recognition and sophisticated depth sensing
in prior. The fine velocity computation yields reasonable TTC
accuracy so that a video camera can achieve collision avoidance
alone from the size changes of visual patterns. We have tested
the algorithm for various roads, environments, and traffic, and
shown results by visualization in the motion profiles for overall
evaluation.

Index Terms—ADAS; TTC; collision avoidance; driving video;
computer vision; motion profile; spatial-temporal filtering

I. INTRODUCTION

COLLISION AVOIDANCE has been studied extensively
for driver assistance systems over decades. LiDAR and

Radar are two main range sensors used in finding depth to
target. However, the collision time not only depends on the
depth, but also depends on the relative speed. On the other
hand, video cameras have also been used on vehicles for
detecting vehicles and pedestrians. They are also used in object
recognition such as lane marks and road edges, for which
LiDAR and Radar are incapable of doing in some cases.

Although there have been success of using cameras on
target recognition coupling tracking with bounding boxes,
these methods focus mainly on rear side appearance and
they are computationally expensive for real time detection.
Main challenges in recognition are vehicle variations, dynamic
background, and disturbance in tracking. There are still errors
in vehicle recognition and disturbances in tracking scenes
with rapidly changing environment due to the vehicle shak-
ing, scene occlusion, and shape deformation. The first fatal
accident of autonomous vehicle was with a truck missed in
object learning algorithms and recognition.

We have noticed that human drivers can perceive ap-
proaching vehicles from target motion in the field of view.
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Particularly, the collision danger can be estimated from an
enlarging object over a short period of time, even if its depth
is sensed inaccurately [1], [2]. In this work, we solely rely on
motion feature in driving video to identify potential collision in
all directions without requiring any shape recognition in prior
and depth estimation with stereo cameras. We focus on the
non-transitive flow in the video for approaching target during
the vehicle motion. For those targets with zero-flow, the Time-
to-collision (TTC) is computed from the flow diverging rate.
For a certain direction, we know how long a collision will
happen if the relative motion of both camera/vehicle and target
are continued. Based on that, precollision breaking or target
avoidance can be applied.

In previous works on collision detection, a target vehicle has
to be identified first with the Haar-type operators via training
[3] and a bounding box is fitted onto it for tracking [4]. Most
of the systems are outlined in survey paper [5] for both vision
and range sensors. Recently, more progress has been reported
on vehicle recognition based on deep learning. Such methods
are based on exhaustive learning of huge data sets. Even the
recognized object marked with a bounding box, it is not always
precise and smooth for TTC estimation, particularly when a
vehicle is viewed from side view or an occlusion happens.

The TTC based on point tracking [6] can only identify
the motion in parallel to the vehicle heading direction, which
yields the Time-to-passing (TTP ) for most of the passing
points, rather than TTC of vehicles approaching to the camera
relatively. Therefore, other vehicle approaching nonparallel to
the camera/vehicle heading direction, and vehicles on curved
roads cannot be alarmed. A tracking of consecutive frames
has to grasp the size and position of bounding box for
understanding vehicle depth [7].

Different from previous works, our method uses simple mo-
tion cues to directly obtain TTC without vehicle recognition.
A dangerous collision from mid-range happens when an object
approaches to the camera in a certain direction. This generates
a zero-flow (optical flow close to zero) in the view [6], [8]. The
TTC of target thus can be obtained instantly those directions,
which is computed further from the object size divided by its
size change according to the rule in [9], [10].

On a motion sensitive belt over the horizon in the video,
we detect the horizontal zero-flow spots, and then monitor
the scene divergence vertically in the crossing vertical zones
in video frames to avoid the object recognition and tracking
with bounding box. These steps are implemented efficiently in
the motion profiles condensed from the belt and zones [11].
We compute dense horizontal motion and detect the horizontal
zero-flow spots in the motion profile. A longer motion than



2

V1-V0

Vehicle A with camera

Vehicle B

Vehicle A with camera

Vehicle B

V0

V1

Vehicle A with camera

Vehicle B

V0

V1

V1-V0

Vehicle A with camera

Vehicle B

Fig. 1. The relative motion towards collision between camera/vehicle and
target vehicles on straight and curved road. The self-vehicle has speed V0

and target vehicle has speed V1. Left column is the vehicle and target
positions in the world coordinate system and right column is the camera
centered coordinate system to see relative motion of targets. Red circles are
the potential collision positions.

traditional between-frame optical flow [6] is estimated.
The motion profile summarizes distinct objects and blurs

small details. This generates dense flow as strong evidence
of targets, since linear features are stable as compared to
corner points with rich occlusion in driving video. Only
vehicles, object rims, and road edges become visible in the
motion profile. Another benefit of condensing is to reduce
image to one dimensional data for fast computation. The
extraction of potential collision from zero-flow also ignores
most background and non-danger vehicles at early stage [12].

At the same time, the horizontal orientation in the entire
view is divided to many zones. In the zero-flow zones, the
color is further condensed (averaged) horizontally for examin-
ing the vertical motion. Based on that, convergence/divergence
factor is computed from clusters of motion trajectories to
confirm approaching vehicles, exclude leaving vehicles, and
follow the vehicles moving in parallel. The TTC is thus
obtained for collision alarming.

In the next section, we introduce the collision scenarios
and the TTC calculation from object size and size change.
We describe our motion data collection in Section III for the
zero-flow with possible danger. Section IV is to confirm the
flow divergence for collision alarming. Section V computes the
Time-to-collision supported by experiments and evaluation in
Section VI.

II. POTENTIAL COLLISION AND ALERT SCENARIOS

A. Potential Collision on Road and Zero-flow in Frames

The collision of a vehicle with other targets on road can
be in different directions. To the camera mounted under the
windshield of vehicle, such a collision has a relative velocity
toward the camera as shown in Fig 1. The relative motion
vector is aligning with a line of sight of the camera causing
a zero-flow in the video. Even if a target moves on one

(a)

(b)

(c)
Fig. 2. Possible collision on different types of roads with relative motion
between vehicles. Pink regions show the camera field of view. (a) Straight
road and crossing road, with side lane vehicle cutting in, or front vehicle
slowing down. (b) Curved road with opposite vehicle upcoming. (c) Merging
road with collision danger.

line of sight, it may move away from the camera, stay at
the same distance, and approach toward the camera with a
potential collision. These actions will show the target size
reduced, stays the same, and enlarged, respectively. In the
real environments shown in Fig. 2, such collision can happen
with front target vehicle on straight road, merging vehicle on
highway ramp, upcoming vehicle on curved road, crossing
vehicle at intersection, etc.

The Time-to-Collision (TTC) with the target is the distance
between two vehicles divided by their relative speed. In the
video, the TTC can be computed from the target size in the
image divided by the size change during a short period, which
will be proved in the following section.

B. Precaution Scenarios and Centered Image Flow

In addition to potential collision, another set of scenarios
are required to pay attention. This is the case that the relative
motion vector of targets intersects the heading direction of
camera, rather than directly towards the camera. Although
it does not imply immediate collision, it may switch to a
potential collision at next moment. As shown in examples in
Fig. 3, the cut-in target vehicle from side lane may cause a
collision if the target slows down further. On a curved road,
the front vehicle slows down. Upcoming vehicle approaches.
At an interaction, crossing targets move towards the vehicle
heading direction. At a merging road, a vehicle speeds up from
side without yield. These actions of target vehicles can be sum-
marized in Fig. 4, where the relative motion vectors of target
vehicles are toward the heading line of the camera/vehicle.
These velocity vectors in the video frame are accompanied
with a horizontal flow towards the Focus of Expansion (FOE),
which is the penetrating point of camera translating direction
with the image plane. If the relative motion of a target has
a vector going behind the camera, the camera/vehicle passes
it without danger. In such a case, an outgoing flow to a side
appears on the target in the video.
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Fig. 3. Different road collision cases cause horizontal motion and vertical flow expansion. The red arrows indicate motion direction of potential collision,
green arrows mean safe motion, and orange arrows mean centered motion direction requiring attention. The vehicle heading direction is at the image center.
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Fig. 4. Some precaution cases where target vehicles generate centered flow
in the video. (left) Actions on different roads: crossing, merging, upcoming
and slow down with respect to the translation and rotation of camera on
a curved road. (right) Relative motion that needs alert. If the extension of
motion vector intersects the camera/vehicle heading direction (orange), it is
a precaution case. If the extension is toward the back of camera (green), the
image flow is outgoing in video and no collision will happen.

C. Vehicle Borne Camera and TTC

After a camera is mounted on vehicle in the forward
direction, its forward translation direction is determined by
the vehicle and will not change during its driving on a straight
path. The FOE is thus fixed at a position in the video. Because
our camera is set at a height lower than all the vehicle tops,
the horizontal plane through the camera focus passes all the
vehicles (lower than all the vehicle tops). If the vehicle is
moving on a horizontal plane, the FOE is on the horizon
projected in the image. In the video, the projected horizon cuts
all the vehicles running on the same plane as the self-vehicle.

We set the camera coordinate aligned with the vehicle, i.e.,
Z axis on the heading direction and the x axis with the horizon
in the image. The image in video is denoted as I(x, y, t),
where t is frame number, and the image flow vector or image
velocity at point (x, y) is denoted as (u, v). The zero-flow for
potential collision is described by u = 0 and the centered flow
for alert can be described by u ∗ x < 0. The outgoing flow in
the frame can be described by u ∗ x > 0, which is on passing
target without danger of collision.

If the vehicle/camera moves along a straight path, the points

on background and vehicles moving in parallel toward the
camera. A point passes line Z = 0 at the Time-to-Pass (TTP ).
In such cases, TTP can be computed as TTP = x/u, where
u is the derivative of x, i.e., horizontal image velocity.

For the points moving in a direction different from Z axis,
e.g., a vehicle moving in its own direction on a curved road,
above formula does not apply. It is not difficult to prove that
TTP for an object can be computed by TTP = D/D

′
for

all target moving directions, where D is the object size D =
x2−x1 in the image, and D′ is the size change D

′
= u2−u1

in the video [10]. For a short proof, the perspective projection
of camera is

x =
Xf

Z
, x1 =

X1f

Z
,x2 =

X2f

Z
(1)

Target width at the same depth (e.g., vehicle frontal or back
surface) is

∆X = X1 −X2 6= 0, (2)

and it is reflected to the image width ∆x according to (1) as

∆X =
x1Z − x2Z

f
=

(x1 − x2)Z

f
=

(∆x)Z

f
, (3)

The target width is constant during its approaching. Therefore,

∆X
′

= 0,
∆x

′
Z −∆xZ

′

f
= 0 (4)

from (3). Thus, we have

TTC =
Z

Z ′ =
∆x

∆x′ =
D

D′ (5)

This means that the TTC computation is not related to
camera property like focal length, but a precise time counting
of target size in the video. All types of camera can implement
this task. On the other hand, at least two lines are necessary
to be paired on the same object in order to measure the object
size. Only the motion with zero-flow may cause the collision,
which yields real TTC. However, it is not easy to couple two
vertical lines on an object without target recognition.
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Fig. 5. One example of horizontal motion profile with motion trajectories of
front targets. (top) Setting a sampling belt marked in red at the horizon in the
frame. (bottom) Motion profile. Pi’s are vertical motion profile zones.

This work does not attempt to perform whole frame vehicle
or object recognition such that the proposed method will be
more robust on general road environments. We rely on lines
appearing horizontally and vertically in the video frame, and
response to the potential collision directly. Driving environ-
ments are full of lines, which can be categorized mainly in
three types in video frames: (1) Horizontal lines on rear side
of vehicle such as bumper, window, and top, shadow and
road marks on the ground; (2) Vertical lines on vehicles and
background such as poles, and side objects; and (3) Lines
through depth on vehicle side view and adjacent lane marks.
These lines are more continuous and robust to follow in
video than points in the moving scenes. The size change of
targets and background can be viewed as the convergence and
divergence of motion flows of these lines in the video.

III. MOTION PROFILING TO CAPTURE OBJECT MOTION

A. Vertical Lines for Understanding Horizontal Movement

To acquire vertical lines in the environment, multiple hor-
izontal belts are placed near the horizon in each frame for
vertical color condensing. Pixels in the belt are averaged
vertically to produce a pixel line. Lines from consecutive

frames are connected along the time axis to form a spatial-
temporal image called Motion Profiles P (x, t) as in Fig. 5.
Vertical features in video appear as trajectories in P (x, t).

The main advantage of motion profile is to ignore most of
the background objects. The vehicles on road are guaranteed
to be covered by the sampling belt because the camera
positioning is lower than the roof of most vehicles. The belt
height can also tolerate small vehicle pitch changes to obtain
smooth motion trajectories when the vehicle moves on uneven
roads. Motion profile reflects both long and short vertical
features, which increases density of motion traces.

The direction of motion trajectory is computed from the
gradient orientation that provides the image motion of objects.
This motion computation is more stable than optical flow
based on two consecutive frames. In addition, the optical
flow assumptions on invariant lighting and motion smoothness
between frames are frequently violated in driving videos. Even
if the trace color changes smoothly in the profile, the trace
direction will not change.

We compute the trace orientation based on the first deriva-
tive in the motion profile. To avoid the noise from digital
sampling of motion profile, we use large filters (9× 9 pixels)
in 5 degree interval for orientation. Horizontal image velocity
u is computed from

u = arctan(θ) where θ = max
−85≤θ≤90

Gθ (6)

This will fill the velocity direction of traces almost everywhere
in the motion profile. To obtain flow as dense as possible for
the motion at all orientation as shown in Fig. 6, we lower
down a threshold for picking meaningful gradient values as

G(x, t) |Gθ| > δ1 (7)

For those locations x with G(x, t) < δ1, u is not reliable
as noise. On the other hand, a temporal illumination change
can occur when a vehicle goes under a shadow area. A large
vehicle pitch may also cause abrupt color changes in the
motion profile. These cause contrast edges orthogonal the
time axis. Such edges are not real feature traces and are
removed according to their close-to-horizontal orientation (u
close to infinity) in the motion profile. Among all traces, a
flow expansion along the time axis means object enlargement
as its depth Z decreases.

B. Potential Collision Estimated in Horizontal Motion Profile

A potential collision of target toward the camera has a zero-
flow in the video, which is a trace along the time axis. In a
potential collision, Considering the physical size of the vehicle
wider than the camera spot, the velocity slightly deviated from
the line of sight may also cause collision to the body of self-
vehicle. Thus, zero-flow region is defined as small flow as

|u(x, t)| < δ2 (8)

which removes safe passing objects including vehicles, and
instant changes of profile colors due to vehicle pitch/shaking
and illumination changes.

In addition to zero-flow, we pay attention to the flow towards
image center (FOE). Thus, a non-zero-flow trace towards
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Fig. 6. Computing target flow from the orientation of target trajectories in
the motion profile. Color from green, red, to blue indicates positive, zero, and
negative flow on the traces towards right, vertical, and left respectively.

the image center (FOE) up to 80 degree in its orientation
is included for attention, as long as it is constrained by
u(x, t)x < 0. Rest of the flow directions indicates passing
by objects without danger. This prevents further processing of
non-collision objects and background in the video [12].

This processing may still contain digital errors. We further
apply median filter in 9×9 regions to motion profile, u(x, t) to
obtain reliable clusters of zero-flow regions. In details, in the
homogeneous color regions obtained from (8) will produce
discretized random noise due to insufficient time sampling
of video on fast target motion. After median filter, the noise
points are reduced as shown in Fig. 7.

There are three cases in the horizontal zero-flow: target (1)
approaching to, (2) leaving, and (3) keeping the same distance
from the camera. Only approaching case will cause collision if
no breaking or avoidance is taken. This can be confirmed from
the flow divergence around the zero-flow spot, where an object
is enlarged due to depth reducing. However, it is not reliable
to segment the horizontal flow u(x, t) to individual objects
from the motion differences, because (a) Multiple vehicles
may have the same flow. (b) Complex occlusion between
vehicles and background may not reveal entire objects. Flow at
occluding point does not reflect true motion. (c) Background
space between two target vehicles may expend or shrink in
video, which is not the motion of a physical object. The flow
divergence or convergence there does not imply a depth change
of space. (d) Empty background, e.g., unpainted barrier has
less feature on it. Overall, there is no guarantee on finding
an object robustly from color, parallelism, and coherence of
traces in the horizontal motion profile. Therefore, we will not
segment an object for its horizontal size, rather we examine
the size changes vertically to identify approaching objects.
These circumstances are summarized in Table I and are also
illustrated in Figures 2 and 3.

IV. VERTICAL FLOW DIVERGENCE ESTIMATION

Since neither target size nor depth are known under the
horizon, the video frame is divided into vertical zones for
further investigation. For simplicity, these zones are equal in
size in order to compensate both straight and curved roads. The
size is decided by considering the target scale at close and mid

t
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Fig. 7. Zero-flow locations shown in red color over a long period before (a)
and after (b) median filtering.

ranges. For example, the center zone that has the far distance
is set approximately at the width of front or opposite vehicles
20m ahead. From these zones, a series of vertical motion
profiles are obtained by condensing the color horizontally. In
these vertical motion profiles, horizontal features on vehicle,
crossing marks on the ground, and a part of road edges
stretching in depth are strongly captured. Denote vertical zones
as P0, P1, P2, ..., Pn depicted in Fig. 5, with P0 at center,
odd number zones on left and even number zones on right
respectively. The scene convergence/divergence is determined
in the zones. We compute the distinct flow in each profile
where the zero-flow has been detected in order to measure the
enlargement of objects in vertical profiles as in Fig. 8.

Because of the scanning effect of side zones on the scenes
sideways [13], the profiles may contain shapes of scenes rather
than motion traces repeated by the same objects, if the zone
does not have a zero-flow in the horizontal motion profile.
Such scanned scenes provide no information on the object
speed. We thus use the zero-flow weights obtained from the
horizontal motion profile to limit the computation only on
reliable vertical motion values.

Figure 8 shows the pairs of horizontal and vertical profiles
simultaneously obtained from video. Zero-flow regions are
marked in horizontal profile P (x, t) and the vertical flow v is
marked in the corresponding vertical profiles. The identified
traces in the vertical profiles are mainly from horizontal
features such as vehicle bumper, shadow, window, top, as well
as from crossing road marks and shadows. Very slanted road
edges in the image from a curved road or a merging road also
respond to the condensing and leave trajectories in the vertical
profiles, as summarized in Table I. Fortunately, only those
horizontal lines supported by the approaching vertical lines on
targets are examined for potential collision. Other horizontal
lines are mostly road edges and surface lines that can be
ignored here and pursued by other lane tracking modules.

Finding the traces in a vertical profile can provide the speed
information of targets relative to the camera in that direction.
We also use oriented differential filters with 5 degree interval
to pick the highest response as the vertical motion direction.
The cost to obtain vertical profiles and computing flow are
equivalent to averaging the entire image frame once, plus
filtering in multiple orientations in y profiles. This is much
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TABLE I
AN OVERVIEW OF HORIZONTAL AND VERTICAL FEATURES IN MOTION PROFILES AND THEIR CLASSIFICATION BY DANGEROUS LEVELS.

Flow Size change Straight road Curved road Merge road Crossing road

Horizontal
motion
profile
from
vertical
features
in image

Zero-flow
u = 0
(potential
collision)

Divergence
Approaching on
straight road
(collision)

Upcoming vehicle along
tangent of curved road (collision)

Merging vehicle causes
collision on highway
(collision)

Crossing and collision
if car is not stopped
(collision)

u = 0 Same distance on
straight road (attention)

Same distance on curved
road (attention) Impossible Impossible

Convergence Leaving ahead at front
(safe)

Leaving on curved road
or turning (safe) Impossible Impossible

Centered
flow
(attention)

u>0, x<0 Cut in from left
(attention)

Approaching on left
curved road (attention) Merge (attention) Crossing approaching

from left (attention)

u<0, x>0 Cut in from right
(attention)

Approaching on right
curved road (attention) Merge (attention) Crossing approaching

from right (attention)
Outgoing
flow (safe)

u>0, x>0 Taking over (safe) Leaving (safe) Yield (safe) Passed (safe)
u<0, x<0 Taking over (safe) Leaving (safe) Yield (safe) Passed (safe)

Vertical
motion
profile from
horizontal
features

Vertical flow
downward
v>0

Front vehicles, Parked
cars (collision)
Crossing road marks
(attention)
and Shadow (safe)

Curved road edge slanted in
image when camera/vehicle
moving toward road edge before
road departure (collision)

Merging vehicle side
appearance (collision)

Side road intersecting
driving path (safe)

smaller than the vehicle detection and recognition algorithms
with a scalable window shifted in the field of view.

V. TIME-TO-COLLISION COMPUTATION

As in the horizontal direction, if the road is flat locally such
that surrounding vehicles are on the same plane, the TTP of
POINTS can be calculated from their y coordinates divided by
the vertical image velocity v, i.e., TTP = y/v. However, if a
road has rolling and a camera/vehicle has shaking in pitch all
the time, we switch to the vertical motion profiles to observe
the motion of horizontal LINES for the TTP .

Given that most non-vertical lines under the camera height
are horizontal in the road environment such as road edges,
guardrails, crossing marks on the ground, a similar conclusion
of TTP calculation as point can be derived. In general, if
we condense a horizontal line segment into a vertical motion
profile, we can prove that the TTP for the camera/vehicle to
run over such a line or its extension is also y/v, even if the
line is scanned by a vertical zone during the camera motion.
This TTP passed under camera is actually the TTC, because
the vehicle body runs over the line to cause a collision or road
departure, unless the line stops and has a non-zero horizontal
flow that leaves away from the vehicle heading.

Theorem: the TTP the camera reaches a line on a horizontal
plane is y/v in any direction x.

Proof: Assume a horizontal line, LE, in the 3D space as in
Fig. 9, which can be a surface line or road edge. The vehicle
moves straight forward in direction OA at speed V0, while
a vertical zone Pi samples LE at the orientation OB. The
TTC to arrive LE at A is OA/V0, where OA is the distance
to collision. In the direction of Pi, the observed point B is
shifting to B

′
, B

′′
..., A gradually on line LE. Because line

LE is approaching to camera in parallel, the TTC is equal
to OB/Vi, where Vi and OB are the approaching speed and
distance of line LE in the orientation of Pi. Therefore,

TTC =
OA

V0
=
OB

Vi
(9)

In video frame, the depth of a point is projected to the camera
at coordinate y as

y =
Y f

Z
(10)

where Y is fixed for horizontal lines in the 3D space, and Z is
the depth of point. Taking the derivative of (10) with respect
to time t, we have vertical image velocity

v = −Y f
Z2

dZ

dt
=
−Y fVz
Z2

(11)

where Vz = dZ/dt and Vy = 0 due to fixed Y of horizontal
line. The TTC thus can be computed from (10) according to
(11), which results the same TTC as for points.

TTC =
OB

Vi
=

Z

Vz
= −Y f

vZ
= −y

v
(12)

This allows us to use the vertical profile in the collision
estimation of road edges, guard rails, and stopping lines in
the same way as lines on vehicle bumpers and windows in the
vertical motion profiles, regardless whether the observed point
is sampled by a zone constantly at the same 3D position or is
shifted on a line during camera motion. By examining vertical
profile Pi(y, t), we found phenomena as:
• Feature traces on a vehicle such as bumper, window, and

roof lines scale up and down coherently during depth
changes; they have the same TTC.

• Road surface has ground features such as white surface
marks, shadows, etc. Their motion is fast approaching in
hyperbolic function of vehicle speed. Vision is incapable
of sensing feature heights above the ground as LiDAR.
However, we can compute the TTC to that surface line
using (12). For surface marks along curved road, we can
still estimate the time to departure based on piecewise
line segments that approximate the curve.

• The trace expansion on a vehicle is mainly observable
below the horizon in the frames. However, due to road
unevenness and vehicle shaking, the y coordinates of
horizontal features are simultaneously waved (Fig. 8).

For single line surface mark, we use skip-one-line policy to
ignore it, because a vehicle normally passes a stopping line at
street crossings as signal is on green. However, if multiple lines
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Fig. 8. Example of TTC computation in vertical and horizontal profiles. (top) Frame, horizontal belts, and vertical zones, as well as vertical profiles from
three zones around the center. Confidence level is presented as the height of vertical bars at top of the profiles. (middle) Horizontal profiles at different heights
starting from horizon to lower positions. The one close to the horizon captures the motion of all objects. The lower ones not only capture the danger at closer
depth but also scan road surface. (bottom) Zero-flow in each profiles above. Non-zero-flow regions have lower weights of confidence displayed in dark.
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Fig. 9. The approaching of vehicle toward a 3D line in a certain angle. The
line is viewed by a vertical sampling zone as a trajectory in its motion profile.

are detected on the ground, they indicate a prohibited region
or parked vehicles that must pass with caution or stop. Such
a case is treated as collision alarming as well. To implement
this, we classify single-line surface marks in bright color in
the vertical profile, i.e., a single narrow trace at the lowest
position in the vertical profile to ignore. If multiple bright lines
are crowed in front of the vehicle, we take them as an area to
pay attention and remind driver to slow down. In general, our
work to predict collision is not necessary to respond to every
ground line, because we assume the surface line marks should
be tracked by other modules like road/lane following.

For each time instance t in the zero-flow profile as shown in

Fig. 8, TTC is computed from multiple traces at their peaks
of gradient starting from the horizon, after ignoring the surface
marks as the outlier. The velocities v of traces at y positions
are obtained in the vertical profile through filtering. Selecting
the highest contrast trace at each moment as a reference with
y0 and v0, a trace at yi in the profile has its size D = yi− y0
and the size change D

′
= vi − v0. The TTC of an object is

obtained according to (12) as

TTC =

n∑
i=1

αi(yi − y0)

vi − v0
(13)

where coefficient αi is related to |yi| and
∑
αi = 1. n is

the number of traces from horizontal features in the zone.
More weights are put on lower features away from the horizon,
because a large yi has larger expansion rate. With the reference
trace, we can cancel the TTC shaking and non-horizontal
motion of target vehicle in the TTC estimation. If TTC is a
negative value, the traces are converging and the target vehicle
is leaving away from the camera, which has no danger of
collision. The common expansion rate of car shadow, bumper,
window, and roof of a vehicle is then obtained for alarming
collision.

Instead of using TTC both for real computation and color
scale display, we have used 1

TTC [14] for result visualization.
Figure 10 shows the color scale used in visualization. With the
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(a) (b) (c)
Fig. 10. Colormap visualizes the dangerous degree of potential collision measured in TTC, which is the function of vertical image position y displayed
vertically in pixel, and vertical motion v displayed horizontally in pixel/frame. The image position of traces are mostly below the horizon at y = 0. The color
bar on right gives the TTC ranging from 0.5 second to infinity. (a) TTC is computed with simulated velocity, which forms a look-up table for fast collision
prediction. (b) TTC from the approximated velocity using 5-degree rotated 9× 9 filters in real motion estimation. (c) TTC data from a large driving video
dataset. Black means there is no data resulted in TTC computation due to the discrete output of orientation filtering.

Vertical Motion 
Profile Generation

Video

Horizontal Motion 
Profile Generation

      TTC 
Computation

Weight of confidence
Computation

    Motion 
Computation
Divergence

Convergence

Parallel

Outgoing flowZero flow Centered flow

Safe

Safe

SafeSafe Safe

AttentionAttention

Collision Attention

Fig. 11. Processing overview. (1) Simultaneous horizontal and vertical motion profiles; (2) Horizontal and vertical motion detection; (3) Weight computation
in Horizontal Motion Profile for confidence; (4) TTC computation in Vertical Motion profiles.

center shifted to the horizon position in the image, we can pre-
compute a lookup table to directly obtain the 1

TTC in real time
estimation. Besides real TTC values, we display four levels of
collision status in video. Safe orientations are colored in green.
Precaution areas close to zero-flow horizontally are painted in
yellow. The approaching objects are marked as orange and
then dangerous situation is alarmed in red.

VI. EXPERIMENTS AND DISCUSSION

Figure 11 shows the processing flow from driving video
to output of different levels of safety alert. Using neither the
distance to the targets nor the vehicle speed itself, we have to
obtain image velocity precisely to facilitate the TTC compu-
tation. We have applied our algorithm onto naturalistic driving
videos without accidents, and the output shows the sensitivity
of the algorithm to the moments that need breaking. A large
number of video have been examined through visualizing the
intermediate results on motion profiles, and total results are
superimposed onto the original video for humans to verify
the correctness of output. It is not necessary to make a real
collision case for verification because the direct computation
of TTC in (5) does not include any complex recognition that
may bring in high missing and false positive rates.

A. Performance and Effectiveness of Our Method
The experiments are carried out using a large driving video

database taken by video cameras facing forward. The videos

t

x
(a) (b)

Fig. 12. Zero-flow weights in one zone for confidence level. (a) Zero-flow
weight computed from the amount of zero-flow points in the horizontal motion
profile. (b) Flow direction in color.

have the resolution of 1280×720 pixels sampled at 30 frames
per second. The computer processor is i7-3770 3.40 GHz with
16GB RAM. The implementation has been done using Matlab
2014b on Windows 7. The horizon is provided in advance for
pixel condensing to the motion profile.

The efficiency of our method lies in processing several pro-
files rather than entire video volume, excluding safe directions
with zero-flow, filtering of traces without object recognition,
computing image motion without iterative procedures like
optical flow, and predicting collision independent on depth



9

(a) (b) (c)
Fig. 13. Error rate of filtering with respect to different filter sizes. (a) 5× 5 (b) 7× 7 (c) 15× 15 pixels

acquisition as stereo camera. The pixel condensing in selected
belt and zones for profiles cost a fixed amount of time,
which is 2ms. The delay of the process in alarming is about
4 frames (< 130ms) caused by the filtering with 9-pixel
window in the motion profiles. This delay is still tolerable
in real time collision prediction. There are average of three
Horizontal Motion Profiles per video. The horizontal profile
filtering and generating weights calculated at the speed of in
2.8ms. The computation for vertical motion is 2.2ms. Hence,
overall computation time is 138ms including the filtering
delay. Current TTC is the block-wised value over entire field
of view. If we want to obtain higher resolution in horizontal
orientation for detailed TTC, more overlapped vertical zones
can be set to make the dense values in TTC, which may take
more time than these values.

B. Precision and Accuracy of Measured TTC

Zero-flow weights are the ratio of zero-flow points in each
vertical zone, Pi, as in Fig. 12. These weights are used as
confidence level visualized in Fig. 8 in vertical profiles at
each moment. Figure 8 shows one example where zero-flow is
detected in the horizontal profile, and corresponding vertical
profiles are triggered for processing in the zero-flow periods.
Because we have displayed the major features of vehicles by
their trajectories in the motion profiles, their positions and
velocity changes are more visible and countable than verifying
bounding boxes in a tracked video.

According to (12), the accuracy of TTC is mainly related to
the image position of trace and the image velocity estimation.
The position can be localized at the trace peak within 1 ∼ 2
pixels in the motion profiles. The errors in the velocity is
yielded from the digital error of 9× 9 pixel filters.

It can be easily derived that the TTC error is inversely
proportional to ∆v2, i.e., the divergence rate of object traces.
This rate is more obvious for close targets than distant ones
according to the perspective projection of video. From (12),
we can derive

∆TTC =
1

v
dy − y

v2
dv (14)

where |dy| is the edge location error less than 2 pixels. The
error of dv ranges differently according to v. Using a 9×9 filter
size, the detectable dv only results in limited levels. These
discrete levels cause blockwise output of TTC in Fig. 10b
emphasizing small TTC values in critical moment. Figure
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Fig. 14. Precision of TTC: Resolution of TTC with respect to the motion
when digitized error from filtering is taken into account. (Left) Discrete
velocity output from skewed line orientations using 5-degree rotated filters.
The velocity results in 20 distinct levels over the range of [−5, 5] pixel/frame.
(Right) Upper bound of TTC error estimated from (14). A parallel moving
target with the camera (v = 0) has a high uncertainty and should not be
used for TTC, until the target shows an obvious motion. Though small, the
repetitive patterns appearing horizontally in the distribution are due to the
digitized error in v calculation from (left).

13 visualizes TTC error rates of different filter sizes. Size
smaller than 9× 9 does not have enough resolution to capture
the motion. On the other hand, larger ones do not decrease
the error significantly. Also, enlarging the filter size is less
affective in measuring far objects (small scales) for the low
sensitivity. A large filter requires more frames to process,
which results in a large delay in the processing as well. In
the ideal case, TTC is smooth as in Fig. 10a.

We test the accuracy of dv for ideal lines skewed in all
directions by using 5-degree spacing filters. The result is
insensitive to some range of dv, which causes error distributed
in large angle correspond to high image velocity as in Fig. 14.
Filtered results of image velocity are compared with the true
velocity and the error is displayed. Nevertheless, the real large
error of TTC is not at the small values before collision (close
to red color in Fig. 14), but in the range when v is close to
0 (yellow color) according to (14). The TTC is as large as
infinite momentarily when a target is moving at the same speed
as the camera. The upper bound of ∆TTC yields distribution
in Fig. 14 from absolute values of two terms in (14). Curved
traces with changing velocity within a short period in the
motion profile may further randomize the output levels.

We have experimented with 27 videos of different scenarios,
which have one hour in total, and have examined the results
in the visualization as Fig. 15. An enlarged detail is also
displayed in Fig. 16. For all the calculated traces, we plot their
distributions of vertical position and velocity that has discrete
levels in output. TTC are yielded from the distributions of v
and y as shown in Fig. 10c.



10

y

t

y

t

y

t

y

t

y

t

P2

P1

P0

P4

P3

x

t

X0

P2

P1
P0

P4

P3

TTC

x

t

P2

P1

P0

P4

P3

P5

P6

Fig. 15. Visualization of 1min long driving video with TTC and confidence levels. The horizontal motion profile, vertical profiles, and 1/TTC values in
the field of view are displayed in order from top. The time axes are all horizontal. The top row in each vertical profile shows bars of potential collision in
that zone (orientation). The bar color shows the dangerous level 1/TTC and the height indicates the confidence level. Below the bar sequence are the traces
from horizontal features in that zone colored for TTC according to their convergence/divergence motion. Green is safe, yellow is pay attention, orange and
red are dangerous. White traces are the references with highest contrast. The bottom figure colors TTC over time in the field of view showing dangerous
level. The intensity indicates the confidence level. Black regions are safe due to the non-zero flow there in the horizontal motion profile.

The visualized color results show 94% of accuracy and
93% percent of precision. That indicates the correctness in the
computation fitting with real situation visualized from video.
We also generated the video to show the results superimposed
on to the input video and confirmed that results visualized in
color have no conflict to the relative movement between the

camera and the targets. Most of the false positives are from
road surface related features in central zones. Main source
of error is vehicle shaking due to road unevenness or on
vehicle breaking. In these cases, localization of y0 is not
precise. This error constitutes approximately 6% in overall
data set. Certainly, smoothly paved road or vehicles with good
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t
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Fig. 16. Enlarged vertical profile with traces colored by their orientation
in a stop-and-go driving. The white trace is the most distinct one below
the horizon as the reference trace. The TTC is computed from the diver-
gence/convergence of traces with respect to the reference trace. The TTC is
displayed also in color bars overtime at the top of the profile. The height of
bars are confidence level of the TTC.

suspension can reduce these type of disturbances.

C. Sensitivity to Various Environments

Different types of roads, as well as a variety of driving
actions ranging from sudden breaking behind stopped cars,
to cut in from side lanes, from truck merging to curved
road vehicle following are selected for testing. The overall
evaluation is satisfactory as an alarming of collision dangers.

The belt height and zone widths are set 60 and 160 pixels
respectively for horizontal and vertical motion profiles. They
are set to cover a vehicle up to 20m ahead, and they certainly
cover a closer vehicle in obtaining distinct motion. We have
observed that scenes as small as 1/4th to 1/3th of the zone
width response to the horizontal pixel condensing and leave
trace in the vertical profile. That means our method is sensitive
to front vehicles as far as 60m if scenes have a good visibility.

The environment changes mainly affect our methods as
follows. (1) For the video with poor visibility such as night
and heavy raining, the condensing of pixels in the belt and
zones will obtain less contrast in the images, and then weak
trajectories in the motion profiles. The confidence level in the
final TTC computation is thus low because of fewer zero-
flow points will be marked in the motion profiles. (2) The
sudden illumination changes such as irregular head light of
upcoming vehicles at night and specular reflection on vehicle
bodies destroy the continuous flow of scenes. This affects
our motion based method more or less in estimating TTC,
which is more significant than other vision approach based on
single frame under insufficient illuminations. (3) The floating
edges on objects and road from shadow, highlight reflection,
and painted road patterns also produce fake motion different
from real vehicle motion, which is a problem in the frame
based object recognition as well. In such cases, the motion
violates the motion smoothness criterion and can be ignored
if a more careful tracking of the motion traces is carried out.
On the other hand, our proposed method can be applied to
other sensors such as infrared video cameras to overcome
the problem, because we are not using object recognition
algorithm as a pre-condition, and infrared video satisfies the
contrast requirement.

D. Comparison with TTC Measure from Other Methods

Most of the public datasets containing videos with LiDAR
data are 10Hz because of their frame based methods in vehicle
recognition and tracking. Although a lower temporal resolution
is not ideal for our motion based method, we compare our

y

x(a)t

x(b)t

x(c)t

x(d)t

x(e)
Fig. 17. Comparison of TTCs with different methods using a typical KITTI
video. (a) First frame in video. (b) Horizontal motion profile. (c) 1/TTC
value of our method in color. The intensity shows the confidence level from
zero-flow weights in horizontal motion profiles. (d) 1/TTC from KITTI 3D
LiDAR data. Black part means missing data. In left part, TTP (red) but not
TTC is counted. TTP is safe due to its out-going flow. LiDAR from depth
can not distinguish TTP . (e) 1/TTC from KITTI’s vision detected vehicle
bounding box, which is not stable due to detection miss (in black) and the
miss-alignment of vehicle window in consecutive frames.

TTC result with depth based TTC from LiDAR, and vision
recognition of vehicles for the verification of our method.
From one of video databases, KITTI [15] with LiDAR ground
truth, we generate a sequence of TTC changes on surrounding
vehicles, and display them along with the horizontal motion
profile as in Fig. 17. The camera/vehicle is about to stop due
to a frontal vehicle waiting for signal. Left lane has slowing
down cars and right lane has a speeding up truck.

LiDAR data surrounding the camera is provided. 3D boxes
fitted on to front vehicle are used for TTC estimation. Other
vehicle’s depth change on side cannot be obtained without
point-to-point matching and tracking in the dynamic depth
map. The point matching and tracking is not feasible for
the sparse LiDAR map (32 or 64 lines) from fast transition
scenes and traffic in real time driving. Therefore, either an
approximation on a large flat surface has to be applied, or
a recognition of vehicle in 3D is required. An example of
such TTC from LiDAR is given in Fig. 17d. 3D box on
the right side truck was not located until enough large parts
become visible. Although the truck is partial in the video
frame, our method using lines as features is capable of sensing
divergent flow (green color) (Fig. 17c). In addition, the depth
discontinuity locations measured by LiDAR may frequently
yield incorrect TTC values at the boundary of vehicles.

On the other hand, a vehicle recognition module can also
provide bounding box for TTC calculation (Fig. 17e), which
is a higher level feature component than the lines we are
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focused on. Vehicle detection in frames has achieved a certain
degree of accuracy [16]. Even if we do not count the error
in recognition, which is reported to be reduced greatly by
the deep learning method [17], the bounding box obtained
from a shift window is generally a little larger than the exact
vehicle size in order to capture the vehicle outer edges. The
size of bounding box jumps randomly from time to time due to
the included background scenes during driving, and it is thus
hard to grasp the size change accurately. This makes the 2D
box inherently inaccurate for TTC estimation. Moreover, the
discrete size and shift position of the window further lower the
precision of the TTC computation. Particularly, the bounding
box becomes error-prone when a vehicle at a close range has
only a part visible by the camera, or a truck different from
normal cars (not trained in deep learning) enters the field of
view partially. In Fig. 17e, side view vehicles are missed in
most of the time because the bounding box is not trained
well to cover all aspect views and parts in the recognition.
Figure 17e gives such an example of frame based recognition
in which the discrete error of TTC happens frequently due to
the jumping box. Our method depends on lines and responses
on partially occluded vehicles and environments. The results
obtained in Fig. 17c is more stable than Fig. 17e.

Our TTC from the motion is partially bothered by heavy
shadow casted on a front vehicle, which generates stronger
traces than vehicle motion traces in the vertical profiles. The
vertical profile may also be affected by painted patterns on
road that approaches in the inverse speed of vehicle. It is a little
difficult to distinguish such false positive lines (safe in driving
though) from the vehicle features and road edges that may
cause collision. Such false positive lines, if they are long, can
be removed in the x-profile as an instantaneous light change.

VII. CONCLUSION

Inspired by our human driving ability, our method purely
uses the motion from a cluster of linear features to compute
TTC, which is in principle applicable to all background
and vehicles. It avoids complicated vehicle searching and
recognition in the video, as well as depth estimation such that
it has the computational efficiency for the real time processing.
Spatial-temporal profiling and filtering of motion in selected
regions have improved the stability of motion estimation with
a single video camera. The divergence of motion at zero-flow
directions achieves a prompt alarming for potential collision
in all directions. The method is an original work using motion
only and the test has been carried out on various driving videos
and environments.
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